

Virtual Private Systems
for FreeBSD

by Klaus P. Ohrhallinger
October 2010

What is VPS ?

● A novel virtualization implementation
● Based on the operating system level

Live demonstration

● Two hosts running FreeBSD 8.1
● Starting up a preconfigured VPS instance
● Live migrating it from host A to host B
● SSH session and running programs remain

functional

Virtualization methods

● Emulation of Hardware
● Hypervisor
● OS level virtualization
● Other methods ...

Features

● Low virtualization overhead
● Similarity of virtual to non-virtual environments
● Nested virtualization
● Live migration
● Fine grained resource control

VPS versus Jail

● Jail:
– Great feature
– Was first meant to isolate and constraint

processes and process groups, rather than
being a OS virtualization implementation

● VPS:
– Multiplexing globals and resources instead of

isolating them
– Providing any resource a non virtual system

would have

OS level virtualization

● Basically any global resource needs to be
multiplexed or isolated

● Multiplexing:
– Resource exists n times rather than 1 time
– Allocated and destroyed on demand
– E.g. process table: each VPS instance has its

own
● Isolating:

– E.g.: a harddisk: only one VPS instance
(typically vps0) is allowed access

Implementation

Multiplexing globals

● Example: process table
– One table for each VPS instance
– Each VPS instance needs PID '1' for /sbin/init
– Live migration allocates certain PID numbers
– VPS instance can only ''see'' its own processes
– No ''p_cansee()''-style check necessary

Multiplexing globals
● Original code:

Int
fork1(td, flags, pages, procp)
{
 ...
 LIST_INSERT_HEAD(&allproc, p2, p_list);
 ...
}
struct proclist allproc;

● Multiplexing code:
Int
fork1(rd, flags, pages, procp)
{
 ...
 LIST_INSERT_HEAD(&V_allproc, p2, p_list);
 ...
}
#define V_allproc VPSYM(allproc)
#define VPSYM(x) curthread->td_vps->_##x
struct thread {
 ...
 struct vps *td_vps;
 ...
}
struct vps {
 ...
 struct proclist _allproc;
 ...
}

Major integration points

● References to global variables
● fork1() and exit1() functions
● Device Filesystem devfs
● /dev/console device driver
● Pseudo-tty (pts) code
● reboot() function

Major integration points

● priv_check() interface
● Syscall entry and return points
● Kernel initialization
● VFS mount operations
● TCP input and output routines

Runtime system configuration

● Some objects are allocated on boot and never
freed.

● VPS has to free destroyed instances entirely.
● Examples:

– ...

Special virtual resources

● For some resources, special treatment is
necessary:

– Device filesystem devfs
– The reboot() system call
– Virtual File System (VFS) operations

Device filesystem devfs

● Hiding devfs entries by means of devfs rules
● Each devfs mount keeps VPS reference
● ''User devices'' like pseudo terminals only show

up in right devfs mount
● Global registry of devices is unchanged

The reboot() syscall

● Any VPS instance can call reboot()
● Only ''vps0'' executes the actual reboot() call
● Other vps instances halt or reboot themselves

Virtual File System VFS

● Virtualizing VFS would be too tricky
● Possibility of sharing filesystems
● Accessing directories of child instances

possible

Live migration

● Snapshot and restore functionality
● → Live migration:

– First filesystem synchronization
– Suspending VPS instance on local host
– Second filesystem synchronization
– Creating snapshot image
– Transferring snapshot image

Live migration

– Issuing restore command to remote host
– On error, resuming local instance
– On success:
– Aborting local instance
– Resuming remote instance
– Announcing remote instance on network

– Didn't lose a single TCP connection

Consistency

● VPS instance has to be suspended
– Removing every thread from sleep queues and

scheduler
– Waiting for threads in uninterruptible sleep
– Setting a flag to keep network stack from

receiving data.
– For resuming the instance, everything has to be

consistent again.

Dumping

● General VPS instance information
● VFS mounts
● Network stack:

– Interfaces, state and addresses
– Routing tables
– More settings and counters

● SYSV IPC

Dumping

● Processes:
– Process information
– Threads
– Virtual Memory (VM) space
– Userspace pages mapped into vpsctl's vmspace
– File descriptors
– Sockets, socket buffers
– Much much more

Dumping

● Size of snapshot can't be predicted
– While dumping and holding non-sleepable locks

no memory allocation possible
– Snapshot shall be in continuous memory
– Reserving huge continuous space for entire

dump and mapping physical pages in as
needed

– Snapshot functions have to unlock and try again
when memory is available

Restore

● Sanity check of snapshot dump
● Resource availability check
● Maintaining list of restored objects to resolve

circular references
● Syscalls get prepared to be restarted or return

EINTR
● VPS instance is in suspended state

Virtual Networking

● Uses the VNET/VIMAGE network stack
virtualization

● Many different ways of interconnecting VPS
instances

● if_vps
– Layer 3 switch
– Address has to be owned by VPS instance
– Published ARP entries on physical ethernet

Privilege Checking

● Not many additional checks neccessary:
multiplexing globals keeps instances separated

– E.g. separate process tables instead of
p_cansee() style function.

● priv_check() → vps_priv_check()
– Any single PRIV_* privilege can be configured

per VPS instance to be either ''allowed'',
ENOSYS or EPERM.

Management

● vpsctl command
– start, stop
– suspend, resume
– snapshot, restore
– migrate
– Configuration files

● /dev/vps
– mmap()
– ioctl()

Configuration

● One configuration file for each VPS instance
– VPS instance name
– Mount command for VFS root
– Number and type of network interfaces
– Allowed IP addresses
– Resource limits
– On migration, configuration file gets synced

Future

Current status and focus in
further developmet

● Testing, improving stability, adding features
● Resource accounting and limiting
● Specification of the snapshot format
● Support for other architectures than i386
● Feature completeness

Testing, improving and new
features

● Currently VPS is highly experimental
– Unsupported resources
– Missing privilege checks
– Bugs

● Go for stability
● Feature completeness for typical use cases
● Being able to live migrate them reliably

Resource accounting

● Currently not implemented at all

● Soft and hard limits for any resource, allowing
overcommitment

● CPU usage and I/O bandwidth configurable
● VPS aware scheduler
● A properly constrained VPS instance must not

be able to affect the host system or other
instances

Specification of snapshot format

● Currently kernel structures are dumped directly
● Incompatibilities between different kernel

versions
● Define own intermediate structures
● Version number on snapshot format
● Userspace tool for converting between versions
● Interoperability between i386 and amd64

Support for other architectures

● Currently only i386 supported
● Very little architecture dependent code
● As development boxes become available

porting can be done easily

Feature completeness

● Ability of copying physical host into VPS
instance, only changing hardware related
configuration like /etc/fstab

● Behavior exactly like on physical host
● No unsupported (not virtualized) resources

Potential use cases

● Server consolidation
● Mass hosting
● Separation of services
● Easier engineering/development

Server consolidation

● A few big physical hosts instead of many idling
hosts

● Better utilization of the hardware
● Distributing load by moving VPS instances
● Hardware maintenance possible without

shutdown of services and almost no outage
● Easier disaster recovery

Mass hosting

● With shadow filesystem, only a few MBs per
instance needed

● VPS instances behave almost like physical host
● Excellent resource overcommitment possible
● Customers can setup and manage their own

child instances if allowed

Separation of services

● One VPS instance per task or service
– Increasing security
– Host setups are simpler, therefore easier to

maintain

Easier engineering/development

● ''Staging'' engineering
– Setting up, configuring and testing host setups

in VPS instances on development hardware
– When ready, migrate VPS instances onto

production hardware
– Engineering in VPS instance and deploying to

physical hardware
● Snapshots

– Easy backups
– Easy ''rollback''

Management on a large scale

● Decentralized Management
– No dedicated ''management'' hosts necessary
– Not introducing Single Point of Failures.

● Daemon on each VPS server
– Object orientated implemenation
– Privilege separation by multiple process design.

● Communication Protocol in JSON
– Easy to handle and human-readable

Management on a large scale

● Fancy GUI:
– Connects up to multiple VPS servers
– Is able to set up one-time authentication

between VPS servers for migration
– Portable thanks to wxWidgets
– Drag'n'Drop

Management on a large scale

● Optional Web interface for customers
– Provides maintenance and disaster recovery

functionality like kill, restart, backup/restore,
reinstall, ...

– Runs unprivileged and connects up to the actual
VPS server daemons.

● Integration into ISP's own infrastructure
– Protocol is well defined
– E.g. VPS instance fully automatically created,

installed and started up by an online shop.

Participation

● Testing
● Submitting bug reports
● Submitting patches
● Any other help is welcome as well
● Further reading, bug tracker, source and binary

sets are available at:
http://www.7he.at/freebsd/vps/

Thanks !

http://www.7he.at/freebsd/vps/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

