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What is VPS ?

● A novel virtualization implementation
● Based on the operating system level



  

Live demonstration

● Two hosts running FreeBSD 8.1
● Starting up a preconfigured VPS instance
● Live migrating it from host A to host B
● SSH session and running programs remain 

functional



  

Virtualization methods

● Emulation of Hardware
● Hypervisor
● OS level virtualization
● Other methods ...



  

Features

● Low virtualization overhead
● Similarity of virtual to non-virtual environments
● Nested virtualization
● Live migration
● Fine grained resource control



  

VPS versus Jail

● Jail:
– Great feature
– Was first meant to isolate and constraint 

processes and process groups, rather than 
being a OS virtualization implementation

● VPS:
– Multiplexing globals and resources instead of 

isolating them
– Providing any resource a non virtual system 

would have



  

OS level virtualization

● Basically any global resource needs to be 
multiplexed or isolated

● Multiplexing:
– Resource exists n times rather than 1 time
– Allocated and destroyed on demand
– E.g. process table: each VPS instance has its 

own
● Isolating:

– E.g.: a harddisk: only one VPS instance 
(typically vps0) is allowed access



  

Implementation



  

Multiplexing globals

● Example: process table
– One table for each VPS instance
– Each VPS instance needs PID '1' for /sbin/init
– Live migration allocates certain PID numbers
– VPS instance can only ''see'' its own processes
– No ''p_cansee()''-style check necessary



  

Multiplexing globals
● Original code:

Int
fork1(td, flags, pages, procp)
{
        ...
        LIST_INSERT_HEAD(&allproc, p2, p_list);
        ...
}
struct proclist allproc;

● Multiplexing code:
Int
fork1(rd, flags, pages, procp)
{
        ...
        LIST_INSERT_HEAD(&V_allproc, p2, p_list);
        ...
}
#define V_allproc VPSYM(allproc)
#define VPSYM(x) curthread->td_vps->_##x
struct thread {
        ...
        struct vps *td_vps;
        ...
}
struct vps {
        ...
        struct proclist _allproc;
        ...
}



  

Major integration points

● References to global variables
● fork1() and exit1() functions
● Device Filesystem devfs
● /dev/console device driver
● Pseudo-tty (pts) code
● reboot() function



  

Major integration points

● priv_check() interface
● Syscall entry and return points
● Kernel initialization
● VFS mount operations
● TCP input and output routines



  

Runtime system configuration

● Some objects are allocated on boot and never 
freed.

● VPS has to free destroyed instances entirely.
● Examples:

– ...



  

Special virtual resources

● For some resources, special treatment is 
necessary:

– Device filesystem devfs
– The reboot() system call
– Virtual File System (VFS) operations



  

Device filesystem devfs

● Hiding devfs entries by means of devfs rules
● Each devfs mount keeps VPS reference
● ''User devices'' like pseudo terminals only show 

up in right devfs mount
● Global registry of devices is unchanged



  

The reboot() syscall

● Any VPS instance can call reboot()
● Only ''vps0'' executes the actual reboot() call
● Other vps instances halt or reboot themselves



  

Virtual File System VFS

● Virtualizing VFS would be too tricky
● Possibility of sharing filesystems
● Accessing directories of child instances 

possible



  

Live migration

● Snapshot and restore functionality
● → Live migration:

– First filesystem synchronization
– Suspending VPS instance on local host
– Second filesystem synchronization
– Creating snapshot image
– Transferring snapshot image



  

Live migration

– Issuing restore command to remote host
– On error, resuming local instance
– On success:
– Aborting local instance
– Resuming remote instance
– Announcing remote instance on network

– Didn't lose a single TCP connection



  

Consistency

● VPS instance has to be suspended
– Removing every thread from sleep queues and 

scheduler
– Waiting for threads in uninterruptible sleep
– Setting a flag to keep network stack from 

receiving data.
– For resuming the instance, everything has to be 

consistent again.



  

Dumping

● General VPS instance information
● VFS mounts
● Network stack:

– Interfaces, state and addresses
– Routing tables
– More settings and counters

● SYSV IPC



  

Dumping

● Processes:
– Process information
– Threads
– Virtual Memory (VM) space
– Userspace pages mapped into vpsctl's vmspace
– File descriptors
– Sockets, socket buffers
– Much much more



  

Dumping

● Size of snapshot can't be predicted
– While dumping and holding non-sleepable locks 

no memory allocation possible
– Snapshot shall be in continuous memory
– Reserving huge continuous space for entire 

dump and mapping physical pages in as 
needed

– Snapshot functions have to unlock and try again 
when memory is available



  

Restore

● Sanity check of snapshot dump
● Resource availability check
● Maintaining list of restored objects to resolve 

circular references
● Syscalls get prepared to be restarted or return 

EINTR
● VPS instance is in suspended state



  

Virtual Networking

● Uses the VNET/VIMAGE network stack 
virtualization

● Many different ways of interconnecting VPS 
instances

● if_vps
– Layer 3 switch
– Address has to be owned by VPS instance
– Published ARP entries on physical ethernet



  

Privilege Checking

● Not many additional checks neccessary:
multiplexing globals keeps instances separated

– E.g. separate process tables instead of 
p_cansee() style function.

● priv_check() → vps_priv_check()
– Any single PRIV_* privilege can be configured 

per VPS instance to be either ''allowed'', 
ENOSYS or EPERM.



  

Management

● vpsctl command
– start, stop
– suspend, resume
– snapshot, restore
– migrate
– Configuration files

● /dev/vps
– mmap()
– ioctl()



  

Configuration

● One configuration file for each VPS instance
– VPS instance name
– Mount command for VFS root
– Number and type of network interfaces
– Allowed IP addresses
– Resource limits
– On migration, configuration file gets synced



  

Future



  

Current status and focus in 
further developmet

● Testing, improving stability, adding features
● Resource accounting and limiting
● Specification of the snapshot format
● Support for other architectures than i386
● Feature completeness



  

Testing, improving and new 
features

● Currently VPS is highly experimental
– Unsupported resources
– Missing privilege checks
– Bugs

● Go for stability
● Feature completeness for typical use cases
● Being able to live migrate them reliably 



  

Resource accounting

● Currently not implemented at all

● Soft and hard limits for any resource, allowing 
overcommitment

● CPU usage and I/O bandwidth configurable
● VPS aware scheduler
● A properly constrained VPS instance must not 

be able to affect the host system or other 
instances



  

Specification of snapshot format

● Currently kernel structures are dumped directly
● Incompatibilities between different kernel 

versions
● Define own intermediate structures
● Version number on snapshot format
● Userspace tool for converting between versions
● Interoperability between i386 and amd64



  

Support for other architectures

● Currently only i386 supported
● Very little architecture dependent code
● As development boxes become available 

porting can be done easily



  

Feature completeness

● Ability of copying physical host into VPS 
instance, only changing hardware related 
configuration like /etc/fstab

● Behavior exactly like on physical host
● No unsupported (not virtualized) resources



  

Potential use cases

● Server consolidation
● Mass hosting
● Separation of services
● Easier engineering/development



  

Server consolidation

● A few big physical hosts instead of many idling 
hosts

● Better utilization of the hardware
● Distributing load by moving VPS instances
● Hardware maintenance possible without 

shutdown of services and almost no outage
● Easier disaster recovery



  

Mass hosting

● With shadow filesystem, only a few MBs per 
instance needed

● VPS instances behave almost like physical host
● Excellent resource overcommitment possible
● Customers can setup and manage their own 

child instances if allowed



  

Separation of services

● One VPS instance per task or service
– Increasing security
– Host setups are simpler, therefore easier to 

maintain



  

Easier engineering/development

● ''Staging'' engineering
– Setting up, configuring and testing host setups 

in VPS instances on development hardware
– When ready, migrate VPS instances onto 

production hardware
– Engineering in VPS instance and deploying to 

physical hardware
● Snapshots

– Easy backups
– Easy ''rollback''



  

Management on a large scale

● Decentralized Management
– No dedicated ''management'' hosts necessary
– Not introducing Single Point of Failures.

● Daemon on each VPS server
– Object orientated implemenation
– Privilege separation by multiple process design.

● Communication Protocol in JSON
– Easy to handle and human-readable



  

Management on a large scale

● Fancy GUI:
– Connects up to multiple VPS servers
– Is able to set up one-time authentication 

between VPS servers for migration
– Portable thanks to wxWidgets
– Drag'n'Drop



  

Management on a large scale

● Optional Web interface for customers
– Provides maintenance and disaster recovery 

functionality like kill, restart, backup/restore, 
reinstall, ...

– Runs unprivileged and connects up to the actual 
VPS server daemons.

● Integration into ISP's own infrastructure
– Protocol is well defined
– E.g. VPS instance fully automatically created, 

installed and started up by an online shop. 



  

Participation

● Testing
● Submitting bug reports
● Submitting patches
● Any other help is welcome as well
● Further reading, bug tracker, source and binary 

sets are available at:
http://www.7he.at/freebsd/vps/



  

Thanks !

http://www.7he.at/freebsd/vps/
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